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An Overview of Canonical Quantum Gravity
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This paper presents a brief review of current results on the canonical quantization
of general relativity using Ashtekar ’ s variables and loop quantization.

1. INTRODUCTION

Slightly over 10 years ago, a new set of paths were opened in the quest
to try to apply the rules of quantum mechanics to general relativity. Several

researchers have contributed to this program, developing various points and

lines of thought. The common threads of this work have to do with the use

of a new set of variables to describe the gravitational field, introduced by

Ashtekar [2], that make the canonical general relativity resemble a Yang±

Mills theory.
At first sight some people might find the premise of the whole program

questionable. After all, general relativity is known to be power-counting-

nonrenormal izable; string theory suggests extra structures are needed for a

consistent theory; moreover, even quantum field theory in curved space-times

encounters serious difficulties. Why waste effort attempting a program that

appears surrounded by doom? It should be realized, however, that most of
the above statements are made within the context of perturbation theory. Most

of the detailed calculations also introduce artificial background structures (for

instance, a Minkowski background in usual perturbative calculations) in the

theory that conflict with the basic symmetry of general relativity: diffeo-

morphism invariance. In fact, if one takes seriously the idea that diffeomorph-

ism invariance is a fundamental symmetry of nature, one might be led to
believe that the proposed program is quite sensible. Diffeomorphism invari-
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ance is usually associated with nonperturbative, discrete objects and concepts.

These are quite distinct from those normally used in quantum field theories.

It might be the case that by attempting to impose diffeomorphism invariance,
we will be forced to use techniques and ideas that are quite novel. In fact,

the emergence of discrete structures and of fundamental dynamical length

scales (like the Planck length) suggests that the ultraviolet problem of quantum

field theories might be controlled. These ideas have been argued back and

forth in generic terms for many years. However, the approach we will describe

here actually puts them into practice and reaches conclusions about the points
raised in a rather concrete fashion. In the end, the proof of the validity of

what is being attempted will be given by the emergence of concrete physical

predictions, hopefully testable, from the theory. We will show that although

we still do not have complete control of the theory, some physical predictions

are already emerging.

This paper will be a very quick and succinct review. It will not attempt
to make a detailed case for the various aspects mentioned. It will be skimpy

on explicit formulas. It will be incomplete in referring to previous work. It

just attempts to be a quickly readable introduction to some of the ideas in

the subject. For a more comprehensive review see the article by Rovelli [1].

2. CANONICAL GRAVITY

Let us start with the basic setting. We will attempt a canonical quantiza-

tion of gravity. This will require setting the theory in a Hamiltonian form.

This has been studied by many authors (see ref. 3 for references). The idea is

that one foliates space-time into space and time and considers as fundamental
canonical variables the three-metric qab and as canonically conjugate momen-

tum a quantity that is closely related to the extrinsic curvature Kab. The time-

time and the space-time portions of the space-time metric (known as the

lapse and shift vector) appear as Lagrange multipliers in the action, which

means that the theory has constraints. In total there are four constraints that

structure themselves into a vector and a scalar. These constraints are the
imprint in the canonical theory of the diffeomorphism invariance of the four-

dimensional theory. They also contain the dynamics of the theory, since the

Hamiltonian identically vanishes. This is not surprising, it is the way in which

the canonical formalism tells us that the split into space and time that we

perform is a fiduciary one. If one attempts to quantize this theory, one starts

by choosing a polarization for the wavefunctions (usually functions of the
three-metric) and one has to implement the constraints as operator equations.

These will assure that the wavefunctions embody the symmetries of the

theory. The diffeomorphism constraint has a geometrical interpretation,

demanding that the wavefunctions be functions of the ª three-geometryº and
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not of the three-metric, that is, that they be invariant under diffeomorphi sms

of the three manifold. The Hamiltonian constraint does not admit a simple

geometric interpretation and should be implemented as an operatorial equa-

tion. Unfortunately, it is a complicated nonpolynomi al function of the basic

variables and little progress had been made toward realizing it as a quantum

operator ever since DeWitt considered the problem in the 1960s. Let us recall

that in this context regularization is a highly nontrivial process, since most

common regulators used in quantum field theory violate diffeomorphism

invariance. Even if we ignore these technical details, the resulting theory

appears as very difficult to interpret. The theory has no explicit dynamics;

one is in the ª frozen formalism.º Wavefunctions are annihilated by the con-

straints and observable quantities commute with the constraints. Observables

are better described, as KucharÏ emphasizes, as ª perennials.º The expectation

is that in physical situations some of the variables of the theory will play

the role of ª timeº and in terms of them one would be able to define a ª trueº

dynamics in a relational way and a nonvanishing Hamiltonian. Unfortunately,

this has never been fully implemented in practice and in fact several model

examples show that the idea can quickly run into trouble [4]. This is the

content of the ª problem of timeº in canonical quantization, which has been

discussed extensively in the literature [5].

About 10 years ago, Ashtekar [2] proposed the use of a new set of

variables to describe canonical gravity. These new variables had the advantage

that they made the theory resemble a Yang±Mills theory. This opened the

possibility of importing techniques from the Yang±Mills context to the gravi-

tational one. The easiest way to introduce the new variables (as pointed out

by Barbero [6]) is to go through an intermediate step, reformulating ordinary

canonical gravity in terms of triads instead of metrics. Canonical gravity has

been described in terms of triads in the past (see, for instance, ref. 7). The

canonical variables are three frame fields EÄ ai , and the conjugate variables

Ki
a are again closely related to the extrinsic curvature. We use a tilde to

denote density weights. The theory has the usual diffeomorphi sm and Hamil-

tonian constraints plus three additional constraints that state that the theory

is invariant under triad rotations. The Hamiltonian constraint is, as in the

usual metric variables, nonpolynomial. If in this theory we now perform a

canonical transformation defining a new variable Ai
a 5 G i

a 1 b Kj
a, where

G i
a is the metric-compatible spin connection and b is a parameter, and we

rescale the triads by 1/ b , the constraints of the theory read

DaEÄ
a
i 5 0 (2.1)

EÄ a
i F

i
ab 5 0 (2.2)
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e ijkEÄ
a
i EÄ b

j F
k
ab 1 2

1 1 b 2

b
EÄ a

i EÄ
b
j (A

i
a 2 G i

a)(A
j
b 2 G j

b) 5 0 (2.3)

As we see, the first constraint has exactly the form of a Yang±Mills-type

Gauss law (Da is the derivative defined by the connection Ai
a). The second

constraint (the diffeomorphism or momentum constraint) states that the Poynt-

ing vector of the field vanishes. The last constraint (also called the Hamiltonian

constraint, or, when promoted to a quantum operator, the Wheeler±DeWitt
equation) is nonpolynomial due to the presence of the G i

a terms. If one were

to choose the parameter b equal to the imaginary unit, the last term disappears

and the constraints become polynomial. This was the original way in which

the Ashtekar variables were introduced. The polynomiality of the constraint

led quickly to a quantum representation and the discovery of solutions, for

the first time ever, of the Wheeler±DeWitt equation [8]. Nowaday, the vari-
ables are slightly different. Thiemann [9] has shown that if one divides the

Hamiltonian constraint by the square root of the determinant of the three-

metric, both pieces of the constraint can be made polynomial in terms of

Poisson brackets of the connection and the volume of the space. This has

led to a series of articles in which he has explored the quantum implementation
of the constraints, upon which we will comment later. Therefore, there is no

need, from the polynomiality standpoint, to set the value of b to the imaginary

unit. This has additional advantages. If b is complex, one is dealing with a

real theory described in terms of complex variables. After quantization, reality

has to be recovered. This led to lengthy discussions about how to implement

the ª reality conditionsº that assured that the theory was a real one. If one
takes real values for b , all variables in the theory are real. The resulting

theory has a more complicatedÐ yet polynomialÐ Hamiltonian constraint

than the one with b 5 i, but it still retains the Gauss law and Poynting vector

conditions (which are b -independent). We can still think of the phase space

of the theory as a submanifold of the phase space of an SU(2) Yang±Mills

theory, and apply several of the techniques we will discuss. We will therefore
adopt the viewpoint from now on that the variables used are real.

3. QUANTIZATION AND LOOPS

To proceed with the canonical quantization of the theory it is customary

to pick a polarization where wavefunctions are functions of the connection

Ai
a; this polarization would be the usual one used in a Yang±Mills context.

The Gauss law requires that the wavefunction be SU(2) (gauge) invariant. The

diffeomorphism constraint requires that the wavefunctions be diffeomorphism

invariant. In this context it turns out to be useful to consider a particular set

of wavefunctions, parametrized by loops, called Wilson loops. These are
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constructed considering the trace of the holonomy of the connection Ai
a around

a closed loop g . These objects are gauge invariant and therefore solve automat-

ically the Gauss law. In fact, there is a ª basisº of gauge-invariant functions
in the sense that one can reconstruct all gauge-invariant information in the

connection from them [10], and therefore any function of the connection as

well. These reasons favored their use for quite some time in the Yang±Mills

context. Unfortunately, the Wilson loops W g (A) are not independent functions.

Wilson loops based on different loops satisfy identities (called Mandelstam

identities [11]) that constrain their values. Therefore they are not really a
ª basis,º but an overcomplete basis. We will address this point later; at the

moment we will loosely refer to Wilson loops as a basis.

If one expands a given wavefunction c (A) in terms of the Wilson

loop basis,

c ( g ) 5 # DA c (A)W g (A)) (3.1)

the coefficients in the expansion will be functions of the loops c ( g ) and will

contain all the information c (A) contained. One can view these coefficients
as wavefunctions in a new representation of the theory called the loop repre-

sentation. As an analogy, one can consider the position and momentum

representations in ordinary quantum mechanics and the Fourier transform

between them. In the loop representation, wavefunctions are functions of

loops, the Gauss law is already solved, and operators will have to be geometri-

cal in nature, acting upon the loops. This representation had been studied by
Gambini and Trias in the Yang±Mills context in the early eighties with some

success, including lattice gauge theory calculations [11]. An added bonus in

the gravitational context, first noted by Rovelli and Smolin [12], is that in this

representation it is straightforward to satisfy the diffeomorphism constraint,

simply by requiring that the wavefunctions be functions of loops invariant

under smooth deformations of the loops. Such functions are called knot
invariants in the mathematical literature. An unexpected connection between

knot theory and quantum gravity had been uncovered.

4. SPIN NETWORKS

Unfortunately, the fact that the Wilson loop basis is overcomplete leaves

an inconvenient imprint on the loop representation. For a function of a given
loop to be admissible as a wavefunction in the loop representation, it has to

satisfy the Mandelstam identities. Therefore not any knot invariant will be

suitable for a wavefunction of the gravitational field. For years this problem

somewhat blocked progress in the construction of states.
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However, it was noted by Rovelli and Smolin [13] that there is a very

natural way to label a basis of independent Wilson loops. The construction

is based on the notion of spin network, introduced by Penrose [14] as a tool
to quantize gravity in an unrelated context in the sixties. The spin networks

of interest for quantum gravity, G , are graphs embedded in three dimensions

with three or higher valence intersections. Each strand in the graph has

associated with it an element of the gauge group in a given representation,

labeled by a (half)integer j. The strands are ª tied up togetherº at intersections

using invariant tensors in the group. The resulting object, which we call a
ª Wilson netº W G (A), is a generalization to the spin network context of the

trace of the holonomy of a single loop. It is a gauge-invariant object, and it

can be shown that it is free of Mandelstam identities. A way to convince

oneself of is to notice that Mandelstam identities are an imprint left on

holonomies due to the use of a particular representation of the group in their

definition [11]. Since Wilson nets contain all possible representations, there
are no identities present.

Having labeled an independent set of Wilson loops made it possible to

make significant progress in other, apparently unrelated fronts. For many

years the issue of what sort of measures would one use to perform integrals

like (3.1) was an open question. These are measures on an infinite-dimensional
space with nonlinear constraints (connections modulo gauge transformations).

Having an independent basis allows one to ª do away with the nonlinearityº

and construct examples of measures. This is a highly technical topic that was

pioneered by Ashtekar and Isham [15] and further developed by Ashtekar et
al. [16] (see ref. 16 for references and as a quick nonmathematical introduc-

tion). To help tame the infinite dimensionality of the space in question, use
is made of a special type of functions called ª cylindrical functions.º For this

brief review, it will suffice to say that with the measures introduced, the

cylindrical functions are orthogonal for different spin networks. That is, in

the context of these functions, the basis of spin networks not only is indepen-

dent, but in a sense it is an orthonormal basis. Moreover, these results can be

straightforwardly translated to the diffeomorphism-invariant context (where
cylindrical functions are also defined). The statement there would be that

spin networks in different diffeomorphism classes are orthogonal.

5. PHYSICS AT THE KINEMATICAL LEVEL

Having a space of functions that solves both the Gauss law and the

diffeomorphism constraint, endowed with an inner product preserved by both

constraints, it is tempting to see if one can compute things that might have

some physical interest. The quantities involved could be considered a ª kine-
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matical settingº in terms of which to discuss evolution. As we shall see,

some interesting results arise that are independent of the evolution chosen.

Some attractive statements can be made about areas and volumes in
terms of spin network states. If one is given a certain two-dimensional surface

S or a three-dimensional one S , it is possible to compute the area or volume

in terms of the canonical variables introduced. The expressions are

A 5 # S

d 2x ! EÄ a
i EÄ b

i nanb (5.1)

V 5 # (

d 3x ! e ijk e , abcEÄ
a
i EÄ

b
j EÄ

c
k (5.2)

where na is the normal of the surface. At first sight, the presence of the

square roots forecasts a regularization nightmare if one wishes to promote

these quantities to quantum operators. In fact, this is not so. Because the
operators have well-defined properties under diffeomorphi sms and the correct

density weights to be naturally integrated, it turns out that their expressions

are particularly simple. For instance, the area of a surface evaluated on a

spin network state is proportiona l to ( ji ! ji (ji 1 1), where ji are the valences

of the strands that pierce the surface. The proportional ity factor involves
Planck’ s constant and the parameter b . So one sees that in the basis of states

considered, and with the inner product we introduced in the last section,

areas and volumes are actually quantized and have a discrete spectrum [13,

17]. The elementary quantum of area involves the parameter b (also known

as the Immirzi parameter). It appears therefore that different choices of b
are associated with different quantum theories with distinct predictions [18].

The idea that areas are quantized and that the spin network strands arise

as ª elementary excitationsº embodies the concept of ª space-time foamº in

a concrete setting, and has found an attractive use in attempts to explain

black hole entropy. The idea is to view the horizon of a black hole as a

boundary of spacetime. The ª extra degrees of freedomº introduced by this

boundary account for the entropy of the black hole. This idea had been
pursued in detail in the (2 1 1)-dimensional context by Carlip [19]. In the

3 1 1 context, using the formulation we are describing, the idea is that given

a certain area A for the horizon, one could view the various possibilities to

obtain the given value of A in terms of spin networks as the ª degrees of

freedomº of the given area. This requires a careful counting. Various countings

have been proposed by Smolin [20], Krasnov [21], Rovelli [22], and more
recently Ashtekar et al. [23]. In the latter work, a certain geometric condition

fulfilled by classical horizons (no outgoing radiation) is shown to imply the

emergence of a Chern±Simons theory on the boundary, which in turn allows

a quite precise counting. The end result is that the entropy, defined as propor-
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tional to the logarithm of the number of states, ends up being proportional

to the area of the surface, the constant of proportionality involving the

parameter b . The usual Hawking ±Bekenstein result of one fourth the area
can only be achieved for a particular value of b . This issue is still being

debated. If b could be determined by independent means, this would provide

a check of the theory. It is encouraging that the same value of b is needed

for different kinds of black holes. Another striking property of the result is

that it is largely independent of the dynamics, which is only used at a classical

level in the arguments presented. There is ongoing work by various people
on all these issues.

6. DYNAMICS

As we mentioned before, one of the original motivations to use the

Ashtekar variables was that with the preferred choice b 5 i, the Hamiltonian

constraint became polynomial in the basic variables,

H 5 e ijkEÄ ai EÄ
b
j F

k
ab (6.1)

However, we noted that the resulting operator is a density of weight 1 2,

since it is quadratic in the momenta. This poses problems at the time of

regularizing the operator. There are no naturally defined densities of weight

two on a manifold. Therefore the end result of most regularization attempts

ends up being dependent on fiducial backgrounds in terms of which one
can construct the needed density weights. The explicit appearance in the

regularized operator of artificial background structures implies very surely

difficulties at the time of enforcing the constraint algebra. For instance,

in the commutator of the Hamiltonian constraint and the diffeomorphism

constraint, external structures are not affected by the diffeomorphisms gener-

ated by the constraint and therefore are not covariant. This immediately leads
to undesired anomalies.

Thiemann [9] realized recently that one can represent the apparently

nonpolynomial single-densitized Hamiltonian constraint,

H 5
e ijkEÄ ai EÄ

b
j

! detg
Fk

ab (6.2)

through the classical identity

e ijkEÄ aj EÄ bj

! detg
5 {Ai

c, V } e Ä abc (6.3)

where V is the volume we introduced in the previous section. The resulting

Hamiltonian therefore has the form



An Overview of Canonical Quantum Gravity 1059

H 5 e Ä abcTr(Fab{Ac , V }) (6.4)

which with some care can be promoted very cleanly to a quantum operator

acting on diffeomorphism invariant cylindrical functions. Thiemann has pur-

sued this goal in a series of papers [9], where he shows the operator is finite

and well-defined, and commutes with itself, therefore satisfying the correct

constraint algebra (if the space of functions were not diffeomorphism invari-

ant, the commutator of two Hamiltonians should be proportional to a diffeo-

morphism, which automatically vanishes if the functions are diffeomorphi sm

invariant). In fact, the same procedure can be applied to the other piece of

the Hamiltonian constraint (if b is real) and to couplings to matter. Therefore

Thiemann has constructed a finite, consistent regularization of real general

relativity coupled to matter. This regularization implements the promise that

diffeomorphism invariance cures the divergences of field theories: the

resulting theory includes QCD and QED coupled to gravity with finite Hamil-

tonians acting on a well-defined space of diffeomorphism-invariant functions.

There is currently an active debate about the properties of Thiemann’ s

Hamiltonian. Most notably, Lewandowski and Marolf [24] noted that one

can define another ª habitatº where Thiemann’ s Hamiltonian is well defined.

This is a space of non-diffeomorphism-invariant functions that still share

several properties of the usual diffeo-invariant cylindrical functions. They

show that Thiemann’ s regularization can be implemented in this space, but

unfortunately, the Hamiltonian that arises still commutes with itself, which

is inappropriate. This casts doubts on the regularization Thiemann proposed,

although no contradiction is proved about Thiemann’ s original proposal.

We [25] have also proved that several modifications one could propose to

Thiemann’ s Hamiltonian do not cure the problem.

A separate line of attack is being pursued in terms of a different space

of functions. These functions are the knot invariants that come from Chern±

Simons theories. Some important mathematical hurdles were cleared recently

and progress is being made. This topic is covered in detail by Gambini [26],

so I will not describe it here.

To summarize the situation for the dynamics, let us say that there is a

proposal (Thiemann’ s) that is a concrete, consistent, well-defined theory of

canonical quantum gravity coupled to matter proposed by the first time ever.

The proposal yields the correct dynamics in 2 1 1 gravity as well. It is yet

to be seen if it encompasses the correct dynamics in 3 1 1 dimensions. Some

people suspect that the results of Lewandowski and Marolf imply that it fails

to do so, but there is no clear proof of this yet. In the meantime, a separate

proposal is being worked out that might overcome these difficulties. Further

studies will determine if this is so.
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7. CONCLUSIONS

I have attempted to give a quick review of several issues associated

with the current state of attempts to quantize gravity canonically. I have left

out many things. In particular I have not even referred to many pieces of

work that played crucial roles in the development of the subject, but that
have become obsolete by the understanding they themselves helped create.

Among the current efforts I have failed to cover, a great deal of activity is

taking place these days trying to find a ª covariantº [27±28] formulation of

the theory using path integrals. One of the rationales for this is that these

kinds of formulations might offer a fresh look on what kind of modifications

to make to Thiemann’ s Hamiltonian to recover the correct dynamics. At the
moment this work is largely exploratory.

The possibility to have for the first time ever a consistent, finite, well-

defined theory of quantum gravity coupled to matter should not be understated.

The payoff is big: not only is gravity quantized, but all the divergences of

quantum field theory disappear. It is quite natural and understandable that
the first theories we might generate end up being later considered with the

hindsight of time ª trivialº or ª wrong.º However, it is obviously important

then to pursue the current theories further to see if they corresponds to the

quantum gravity we expect to see in nature or to inapplicable mathematical

elaborations. This is what one expects from science.
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